The GOLD STANDARD in Biodegradable Polymer Technology - Long Term Evidence of Biolimus A9[™] Drug Eluting Stent

Antonio Colombo

Biolimus-A9™ Eluting Stent

- Biolimus is a semi-synthetic sirolimus analogue with 10x higher lipophilicity and similar potency as sirolimus.
- Biolimus is immersed at a concentration of 15.6 µg/mm into a biodegradable polymer, polylactic acid, and applied solely to the abluminal stent surface by a fully automated process.
- Biolimus is co-released with polylactic acid and completely desolves into carbon dioxide and water after a 6-9 months period.
- The stainless steel stent platform has a strut thickness of 120 μm with a quadrature link design.

LEADERS 'all-comers' Trial Design

Angiographic study:

MACE: Cardiac death, MI, clinically-indicated TVR (9 m Death, CV death, MI, TLR, TVR Stent thrombosis according to ARC In-stent % diameter stenosis (9 mo) Late loss, binary restenosis

DAPT recommended for 12 months

Patient Demographics

	BES 857 Patients	SES 850 Patients
Age in years	65 ± 11	65 ± 11
Male gender	75%	75%
Arterial hypertension	74%	73%
Diabetes mellitus	26%	23%
- insulin-dependent	10%	9%
Hypercholesterolemia	65%	68%
Family history of CAD	40%	44%
Smoking	24%	25%
Previous MI	32%	33%
Previous PCI	36%	37%
 with drug-eluting stent 	12%	14%
Previous CABG	11%	13%

Patient Characteristics

	BES	SES
	857 Patients	850 Patients
Chronic stable angina	45%	44%
Acute coronary syndrome	55%	56%
 Unstable angina 	22%	21%
 Non-ST-elevation MI 	17%	18%
 ST-elevation MI 	16%	17%
Left ventricular ejection fraction	56 ± 11%	$55\pm12\%$
Number of lesions per patient	1.5 ± 0.7	1.4 ± 0.7
Lesions per patient		
1 lesion	63%	69%
 2 lesions 	29%	22%
 3 lesions 	7%	8%
 > 4 lesions 	1%	2%
De novo lesions	92%	91%
Long lesions (>20 mm)	31%	27%
Small vessels (RVD ≤2.75 mm)	68%	67%
Off label use	81%	78%

Patient Flow - Clinical

MACE (Cardiac Death, MI and ci-TVR)

MACE = cardiac death, MI, or clinically-indicated TVR * p-value for superiority Serruys et al., oral abstract presentation, TCT 2012

Cardiac Death

Μ

Clinically-Indicated TVR

Patient Oriented Composite Endpoint (All-cause Death, Any MI, All Revascularization)

POCE = all death, MI, any revascularization (includes adjudicated and non-adjudicated events)
* p-value for superiority

Serruys et al., oral abstract presentation, TCT 2012

Definite Stent Thrombosis (ARC)

Effect of DAPT Discontinuation

Definite ST (ARC) Landmark Analysis @ 1 Year

Stratified Analysis of MACE @ 5 Years

	RES	SES	R (95%CI)	Favors BES	Favors SES	P*	P for
Overall	186 (21 7)	216 (25.4)	0.83 (0.68 to 1.02)			0.069	interaction
Diabetes mellitus		210 (2011)					ns
Yes	66 (29 6)	56 (29.3)	1 02 (0 71 to 1 46)	·		0.91	
No	94 (14.8)	136 (20.6)	0.70 (0.54 to 0.91)	- -		0.007	
ACS	0. (1.1.0)						ns
Vos	02 (17 7)	106 (22.4)	0.77 (0.59 to 1.02)		-	0 073	
No	03 (17.7) 77 (10.0)	100 (22.4)	0.77 (0.56 to 1.03)			0.075	
ST clovation MI	77 (19.9)	00 (22.0)	0.86 (0.63 (0 1.18)	· •		0.55	0.040
			0 45 (0 04 += 0 00)	_		0 000	0.040
tes	15 (11.1)	32 (22.9)	0.45 (0.24 to 0.83)			0.009	
	145 (20.1)	160 (22.5)	0.89 (0.71 to 1.11)		† •	0.29	
Left anterior descending						0.44	ns
Yes	74 (18.2)	85 (20.4)	0.88 (0.64 to 1.20)			0.41	
No	86 (19.2)	107 (24.8)	0.76 (0.57 to 1.01)		•	0.056	
Multivessel disease							ns
Yes	44 (21.1)	48 (27.3)	0.75 (0.49 to 1.13)			0.16	
Νο	116 (17.9)	144 (21.4)	0.83 (0.65 to 1.06)			0.13	
De-novo lesions							ns
Yes	139 (17.6)	165 (21.3)	0.81 (0.65 to 1.02)		•	0.076	
Νο	21 (30.9)	27 (36.5)	0.82 (0.46 to 1.45)			0.49	
Small-vessel disease							ns
Yes	120 (20.5)	131 (23.1)	0.88 (0.69 to 1.13)			0.33	
Νο	40 (14.8)	61 (21.8)	0.65 (0.44 to 0.97)			0.033	
Long lesions							ns
Yes	54 (20.6)	63 (28.0)	0.72 (0.50 to 1. <u>03)</u>			0.071	
No	106 (1 <u>7.8)</u>	129 (20.7)	0.85 (0.66 to 1. <u>10)</u>			0.21	
				.25 .5	1 2 4		

BIOSENSORS **NTERNATIONAL**[™]

All p-values are for superiority * Mantel Cox p-value

Conclusions

- Biodegradable polymer BES maintained non-inferiority and improved long-term clinical outcomes compared to SES through 5 years ($P_{sup} = 0.071$)
- Biodegradable polymer BES demonstrated a 74% relative risk reduction in very late definite stent thrombosis (VLST)
- The benefit of biodegradable polymer BES emerged in the very late phase and was mainly driven by a lower risk of MACE associated with definite VLST

The BEACON II registry: 4 year outcomes in an Asian Pacific patient population

- The purpose of the BEACON II registry was to assess clinical outcomes in Asia Pacific patients treated with BioMatrix[™] stent in a *real world, all-comers* population.
- The goal of this presentation is to present, for the first time, the four year clinical follow-up data of BEACON II registry.

BEACON

BEACON II Registry Design

Patients enrolled from 12 Asia Pacific sites

BEACON II

Lesions Treated per Patient (ITT)

Lesion Morphology and Characteristics

N = 742 Target	Lesions
	%
Bifurcation Lesion (Side Branch > 2mm)	14
with Moderate/Severe Calcification	4.3
Moderate/Severe Calcification	24
Long Lesions > 20 mm	31
Small Vessels < 2.75 mm	34
Total Occlusion	9.3
De Novo Lesions	95

BEACON II

Procedural Characteristics

Mean Lesion Length	18.7mm (± 9.7)
Mean Stent Length	19.2mm (± 6.0)
Stents per Target Lesion	1.16 ± 0.47
Device Success ¹	98.5%
Lesion Success ²	98.7%
2	

¹ Device Success defined as achievement of a final residual in-stent diameter stenosis of < 30% (visual estimate), using the BioMatrix DES.

² Lesion Success defined as attainment of < 30% in-stent residual stenosis of the target lesion using any percutaneous method.

³ Procedural Success defined as achievement of Device Success without the occurrence of in-hospital MACE.

Hierarchical MACE

Hierarchical MACE (Landmark Analysis)

1172-000 -EN- Re

Antiplatelet Agent Utilization

	%
Aspirin	
- At 6 Months	95.8
- At 12 Months	93.2
- At 2 Years	89.6
- At 3 Years	90.2
- At 4 Years	90.7
Clopidrogel/Thienopyridine	
- At 6 Months	96.2
- At 12 Months	70.7
- At 2 Years	37.0
- At 3 Years	31.5
- At 4 Years	23.8

Definite Stent Thrombosis – ARC Defined

(Landmark Analysis)

Walters D. et al., oral presentation, AsiaPCR 2013

BEACON II

Conclusion

- BEACON II registry confirms an excellent safety profile up to 4 years for BioMatrix[™], when used in routine clinical practice in an Asian population with a low MACE rate of 9.4%
- Definite VLST
 - Although this was an all-comers registry
 - Definite VLST events were rare (0.4%)
 - No additional ST event after 2 years
 - No VLST events occurred in patients where a BioMatrix stent was implanted in native coronary arteries
- A very positive safety profile is particularly of note in an all-comers registry population.

